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Abstract
p-type gallium nitride (GaN) layers were regrown on etched surfaces on free-standing GaN
substrates by metalorganic chemical vapor deposition with different growth rates by adjusting
trimethylgallium flow rates. The roughness of the samples increases almost linearly with the
growth rate, with an increase rate of 0.6 nm (µm h−1) −1. The screw dislocation density of the
samples increases significantly when the growth rate is higher than 0.5 µm h−1. When the
magnesium (Mg) doping concentration is higher than 7.0 × 1019 cm−3, transmission electron
microscopy images clearly show the regrowth interfaces, and Mg precipitate occur in
high-doping p-GaN layers. Under the same bis(cyclopentadienyl)magnesium (Cp2Mg) flow
rate, the Mg doping concentration decreases with the growth rate. The samples with different
growth rates show different electroluminescence spectra. The emission peak at 2.8 eV is due to
the transition from the deep donor level to the Mg acceptor level. And the intensity of this peak
drops with increasing growth rate due to reduction of Mg acceptors. Transitions related to defect
levels appears with increasing growth rate due to an increased screw dislocation density.
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1. Introduction

Gallium nitride (GaN) has been widely researched in recent
years for optoelectronics, photonics and electronics. GaN
is especially considered as a promising material for power
electronics due to its wide bandgap, large breakdown elec-
tric field and high operation temperature [1–3]. In order to
achieve high performance and flexible design of GaN power
devices, selective-area doping is indispensable. Ion implanta-
tion, dopant diffusion, and epitaxial growth (or regrowth) are
the most common approaches to realize the selective-area dop-
ing. However, it has been reported that GaN was not very res-
istant to ion beam disordering, and the problem became more

severe at higher doses [4]. Besides, high density of disloca-
tions in GaN can strongly affect the effective diffusion penet-
ration depth, and the surface dissociation becomes worse dur-
ing high-temperature annealing [5]. Currently, regrowth is still
one of the most effective and feasible approaches to obtain
well-controlled selective-area doping for GaN devices.

Regrowth has been applied to many device structures for
various purposes. A selectively regrown emitter has been
reported for use in GaN bipolar junction transistors (BJT) [6].
Recessed-gate structures for the metal-semiconductor field-
effect transistor and AlGaN/GaN heterostructure field effect
transistors have been realized by regrowth [7–9]. Regrown
ohmic contact layers for source and drain electrodes have
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shown to be effective in reducing specific contact resistance
[10–13]. Regrown AlGaN/GaN layers have been successfully
applied to vertical GaN power transistors with high perform-
ance [14, 15]. Interfaces created by regrown p-GaN have been
reported to show threshold switching and memory behaviors
with high temperature stability [16]. Regrown p-GaN for ver-
tical GaN p-i-n diodes has been reported to achieve high break-
down voltages [17, 18].

The regrowth of p-GaN is an extremely important part
for achieving high-performance and flexible design of GaN
power devices, such as junction barrier Schottky diodes, float-
ing field rings, junction termination extension, field effect tran-
sistors and BJT. To achieve selective-area doping by regrowth,
an etch-then-regrow process is usually needed. The regrowth
process can introduce impurities such as carbon (C), oxygen
(O), and silicon (Si), which are extremely undesired and will
degrade the performance of GaN devices [19]. Compared with
C andO, the residual Si is more problematic for regrowth since
it is very difficult to be removed. And it is still unclear where
the Si comes from although many efforts have been made to
reduce the contaminants [18, 20–24]. Besides, the dry etching
process can introduce etching damage at the regrowth inter-
face. The existence of the contaminants at the interface may
be unproblematic or even beneficial for the regrown n+-GaN
as ohmic contacts because Si atoms serve as donors used for
n-type doping. However, the residual Si is a big problem for
the regrowth of p-GaN due to compensation.

Many fundamental problems in p-GaN regrowth remain
to be solved; however, there are few reports so far on
the topic. Although the effects of growth rate on as-grown
p-GaN material properties have been investigated very well,
few reports have been found on the regrown p-GaN with
different growth rates, especially considering the regrowth
interface. In this work, p-GaN layers with different growth
rates were regrown on GaN free-standing substrates by met-
alorganic chemical vapor deposition (MOCVD). The effects
of the growth rate on surface roughness, crystal quality,
magnesium (Mg) doping concentration, interface proper-
ties, electroluminescence (EL) and defect levels have been
investigated.

2. Experimental details

The samples were grown by MOCVD on c-plane GaN
free-standing substrates with Si doping concentration of
~1018 cm−3. Three GaN substrates were first loaded into the
chamber, and 1 µm thick n-GaN was grown as the buffer
layer followed by 2 µm thick unintentionally doped (UID)
GaN as the drift layer. To investigate the effects of dry
etching on the properties of regrown p-GaN, chlorine-based
inductively coupled plasma (ICP) etching was used to etch
away 500 nm of the GaN drift layer, creating an etched
surface for the etch-then-regrow process. The RF and ICP
powers of the ICP etching were 70 W and 400 W, respect-
ively. The chamber pressure was 5 mTorr. The samples were
cleaned using acetone, isopropyl alcohol and de-ionized water
and then re-loaded into the chamber to regrow a 500 nm

Figure 1. Schematic structures and etch-then-regrow process of
GaN p–n junctions with different growth rates on GaN substrates
grown by MOCVD.

thick p-GaN layer with different growth rates that were con-
trolled by adjusting the trimethylgallium flow rate under the
same bis(cyclopentadienyl)magnesium (Cp2Mg) flow rate of
0.15 µmol min−1. The samples are denoted as sample A,
sample B, and sample C for growth rates of 0.5 µm h−1,
1.0 µm h−1, and 2.0 µm h−1, respectively. Rapid thermal
annealing at 700 ◦C for 20 min in N2 ambient was used to
activate Mg acceptors in the p-GaN layers. Figure 1 shows the
structures and etch-then-regrow process for the samples.

3. Results and discussion

Before the regrowth of p-GaN, the root-mean-square (RMS)
roughness of the UID-GaN layers for all the samples before
and after the ICP etching was about 0.16 nm and 0.20 nm,
respectively, measured by atomic force microscope (AFM).
The roughness before/after the ICP etching was very small
compared with reported results [25–27]. Figure 2 shows the
surface roughness of the samples after the regrowth. The RMS
roughness of sample A, sample B, and sample C is 0.66 nm,
1.02 nm, and 1.58 nm, respectively. The roughness of the
samples increased after the regrowth of p-GaN compared with
the roughness after etching. Meanwhile, the roughness of the
samples increases almost linearly with the growth rate. The
increase rate is around 0.6 nm (µm h−1)−1. This indicates
that high growth rate can degrade the surface morphology of
regrown p-GaN layers. It is believed that with the increase
of growth rate, there is less time for atoms to migrate later-
ally on the surface to form a good layer-by-layer growth espe-
cially when there is a small miscut angle for the GaN substrate,
thereby leading to a rougher surface. The high growth rate can
also exacerbate the formation of steps which thereby exacer-
bate the formation of screw dislocation which agrees well with
the following results.

The crystal quality of the samples was characterized using
x-ray diffraction (XRD) rocking curves (RCs) for symmetric
(002) and asymmetric (102) planes, as shown in figures 3(a)
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Figure 2. Surface roughness of (a) sample A, (b) sample B, and (c)
sample C. (d) Surface roughness as a function of growth rate. The
scan area of the AFM image is 5 µm × 5 µm.

and (b), respectively. The full-width-half-maximum (FWHM)
as a function of growth rate is summarized in figure 3(c).
The FWHM for the (002) plane of sample A, sample B, and
sample C are 58.0 arcsec, 92.5 arcsec, and 82.8 arcsec, respect-
ively. The FWHM for the (102) plane of the samples is 27.0
arcsec, 31.7 arcsec and 27.7 arcsec, respectively. Based on
the FWHM of the two planes, the dislocation density of the
samples can be estimated as shown in figure 3(d) [28]. The
(002) plane FWHM corresponds to screw dislocations, and
the (102) plane FWHM is mainly due to edge dislocations.
It can be seen that the edge dislocation density is relatively
small and does not change much with increasing growth rate.
On the other hand, screw dislocations dominate in the regrown
p-GaN film. Generally speaking, the screw dislocation dens-
ity is higher at higher growth rate. The total dislocation dens-
ities are estimated to be 3.5 × 106 cm−2, 8.6 × 106 cm−2,
and 6.9 × 106 cm−2 for sample A, sample B, and sample C,
respectively, as shown in figure 3(d).

Transmission electron microscopy (TEM) was used to fur-
ther investigate the regrown p–n junctions as shown in figure 4.
Obvious regrowth interfaces can be seen in the TEM images
for the samples. According to our previous results, the sharp
contrast near the regrowth interface is due to very high con-
centrations of Si and Mg at the regrowth interface. There are
two reasons for the enrichment of the two impurities at the
regrowth interface: the regrowth process and Mg/Si co-doping
[29]. It should be noted that there is a substantial amount ofMg
precipitate in the regrown p-GaN of sample A. The appearance
of Mg precipitate indicates that the Mg concentration in the
regrown p-GaN with a low growth rate has exceeded Mg solu-
bility limit in the p-GaN, i.e. the p-GaN was over-doped [30].

Figure 3. XRDRCs for (a) symmetric (002) and (b) asymmetric
(102) reflections. (c) The FWHM for the (002) and (102) planes as a
function of growth rate. (d) Screw, edge and total dislocation
densities as a function of growth rate.

However, no identifiableMg precipitate was found in the other
two samples which have the same Cp2Mg flow rate but higher
growth rates. These results suggest that the growth rate can
affect the Mg doping concentration. This makes sense because
higher growth rate means larger GaN volume competing for
the same amount of Mg, which is equivalent to a decrease in
Mg concentration with the same Cp2Mg flow rate. Higher Mg
precipitate could increase the tunneling effect when the p–n
diode is under reverse bias due to the increased defect density.
The p+–n+ junction at the regrowth interface due to the high
Mg and Si concentrations can make the regrown p–n diode
behave like a Zener diode that the reverse current density was
almost temperature independent [19].

Figure 5(a) shows the Mg concentrations of the samples
as a function of growth rate measured by secondary ion mass
spectrometry. It is consistent with the TEM results that higher
growth rate leads to lower Mg doping concentration. The
regrown p-GaN layer of sample Awith obviousMg precipitate
has the highest Mg doping concentration of 7.0 × 1019 cm−3.
The dependence of Mg doping concentration on the growth
rate will be a big challenge for selective-area doping using
the regrowth approach. The growth rate with a growth mask
(e.g. SiO2) is much higher than that without the mask. This
will cause low Mg doping concentration and low conductive
p-GaN layer, which is detrimental to some GaN devices such
as p-GaN gated transistors. The regrowth in a patterned region
will also lead to non-uniform Mg doping due to the different
growth rates on different crystal planes [31, 32].
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Figure 4. Cross-sectional TEM images of the regrown p–n junctions with different growth rates.

Figure 5. (a) Mg concentration vs growth rate. (b) Current–voltage
curves between the ohmic contacts on the regrown p-GaN layers of
the samples.

Figure 5(b) shows current–voltage (I–V) curves between
two ohmic contacts using a transmission line method for the
samples. Pd/Ni/Au (10 nm/20 nm/50 nm) metal stacks were
deposited on the samples by electron-beam evaporation for
p-GaN ohmic contacts, followed by annealing at 400 ◦C for
5 min in N2 ambient. It is obvious that the regrown p-GaN
layer is more resistive with lower Mg doping concentration
caused by higher growth rate.

Figures 6(a)–(c) show normalized EL spectra for the three
samples. As shown in the insets, the EL intensity decreased
with increasing growth rate due to the decrease in Mg doping
concentration. Gaussian equations were used to fit the spec-
tra for further analysis on emission properties. Figure 6(d)
presents possible transitions between energy levels in p-GaN
to explain the EL spectra of the samples. Three EL peaks of
2.2 eV, 2.8 eV, and 3.0 eV were found for sample A. The
2.2 eV peak is related to the capture of conduction band elec-
trons by a deep acceptor level centered at 2.2 eV below the
conduction band edge (CBE) [33]. The 2.8 eV peak stems from
donor–acceptor pair luminescence due to transition from deep
donor level (~0.4 eV below the CBE) to the Mg acceptor level
which is ~0.2 eV above valence band edge (VBE) [34, 35].
The 3.0 eV peak is due to the transition from the deep donor

Figure 6. Normalized electroluminescence and fitting spectra using
Gaussian equations for (a) sample C, (b) sample B, and (c) sample
A. (d) Schematic of possible transitions for the electroluminescence
of the samples.

to the VBE. Compared with sample A, an obvious change in
the spectra of sample B to sample C is the weakening and
disappearance of the transition (2.8 eV) from the deep donor
level to the Mg acceptor level as the growth rate increases
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(or theMg doping concentration decreases). This phenomenon
is due to the reduction ofMg acceptors with the decrease of the
Mg doping concentration. For sample B, the transition (3.0 eV)
from the deep donor level to the VBE almost disappears, and
a new transition peak (2.54 eV) is observed. There are two
possible defect-related levels that are responsible for the new
transition peak as shown in figure 6(d), which are named BD1

and BD2. The disappearance of the transition of 3.0 eV sug-
gests a new competitive process from the deep donor level.
Therefore, the trap level BD2 centered at 0.46 eV above the
VBE is the most likely one for the transition in sample B. For
sample C, there are also two possible defect-related levels that
are responsible for the new transition peak (2.0 eV) shown
in figure 6(d), which are named CD1 and CD2. The relative
reduction in the EL peak of 3.0 eV (figure 6(a)) also indic-
ates the existence of a competitive process compared to the
sample A (figure 6(c)). So, the trap level CD2 centered at
1.0 eV above the VBE is the most likely one for the trans-
ition in sample C. The increased screw dislocation density in
sample B and sample C is likely to be the cause of these defect
levels.

4. Conclusion

In summary, the effects of growth rate on p-GaN layers
regrown on etched surfaces on free-standing GaN substrates
by MOCVD have been comprehensively investigated. The
roughness of the samples increases almost linearly with the
growth rate at ~0.6 nm (µm h−1) −1. The screw dislocation
density of the samples increases significantly when the growth
rate is higher than 0.5 µm h−1. In addition, under the same
Cp2Mg flow rate, the Mg doping concentration decreases with
the growth rate. Obvious regrowth interfaces can be seen in
the TEM images of the samples. Mg precipitate was observed
in regrown p-GaN when the Mg doping concentration was
higher than 7.0 × 1019 cm−3. This is because Mg solubility
limit has been exceeded and the p-GaN was over doped. Fur-
thermore, the samples with different growth rate also show
different EL spectra. The transition (2.8 eV) from the deep
donor level to the Mg acceptor level diminishes as the growth
rate increases (or the Mg doping concentration decreases).
Transitions related to defect levels appears with the increase
of growth rate due to the increased screw dislocation density
at higher growth rates.
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