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ABSTRACT

In this work, we demonstrate the high performance of b-Ga2O3 metal–insulator–semiconductor (MIS) diodes. An ultrathin boron nitride
(BN) interlayer is directly grown on the Ga2O3 substrate by pulsed laser deposition. X-ray photoelectron spectroscopy, Raman spectroscopy,
and high-resolution transmission electron microscopy confirm the existence of a 2.8 nm BN interlayer. Remarkably, with the insertion of the
ultrathin BN layer, the breakdown voltage is improved from 732V for Ga2O3 Schottky barrier diodes to 1035V for Ga2O3 MIS diodes owing
to the passivated surface-related defects and reduced reverse leakage currents. Our approach shows a promising way to improve the break-
down performance of Ga2O3-based devices for next-generation high-power electronics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0176578

b-Ga2O3 has attracted significant interest due to its ultrawide-
bandgap (UWBG) of �4.85 eV, high breakdown electrical field of
�8MV/cm, mature n-type doping technique, and high Baliga’s figure
of merit.1–6 In addition, freestanding, single-crystal b-Ga2O3 substrates
with large sizes are commercially available by melt growth methods.7,8

These unique advantages make b-Ga2O3 a very promising material for
next-generation power electronic devices, compared with the existing
wide-bandgap (WBG) materials (SiC and GaN) and UWBG materials
(AlN and diamond).

In recent years, a variety of methods have been proposed to
improve the breakdown performance of Ga2O3 Schottky barrier diodes
(SBDs), including field plate,9–11 guard ring,12,13 trench,14,15 and junc-
tion termination extension.16,17 A high breakdown voltage of >2 kV
has been achieved.9,17 In addition to the above-mentioned method,
metal–insulator–semiconductor (MIS) diodes are also an attractive
alternative to improve the breakdown performance. Introducing an
ultrathin dielectric layer can successfully suppress the reverse leakage
current and mitigate the electrical field at Schottky contact edges.18–20

Boron nitride (BN) can be a promising candidate as an interlayer for
MIS diodes owing to its UWBG of �6 eV, high breakdown electric
field of �10MV/cm, high stability, and flat surface.1,19–22 Kim et al.
fabricated h-BN/Ga2O3 metal�insulator�semiconductor field-effect
transistors (MISFETs) by using mechanically exfoliated Ga2O3 and h-

BN flakes, which reduces leakage currents by two orders of magni-
tude.23 Later on, Li et al. reported h-BN/Ta-doped-Ga2O3 MISFETs
with suppressed interface defects and improved mobility.24 Recently,
Rama et al. demonstrated h-BN/Ga2O3 Schottky junctions with
increased turn-on voltages.25 In these works, however, they all used
mechanical exfoliation to transfer h-BN flakes from exotic substrates
to Ga2O3 substrates, where the quality of h-BN flakes suffers from con-
taminations and poor control of film thickness and uniformity.26,27

Therefore, direct growth of BN thin films on Ga2O3 would be more
appealing to improve the performance of Ga2O3-based devices and
can also facilitate the fundamental studies such as high field transport
in Ga2O3.

In this study, we fabricated Ga2O3 MIS diodes with an ultrathin
layer of BN grown by pulsed laser deposition (PLD). The Ga2O3 wafer
(from Novel Crystal Technology) consists of a �600lm-thick heavily
doped (001) Ga2O3 substrate with an Sn doping concentration of
�8� 1018 cm�3 and a �9lm thick epitaxial layer with a Si doping
concentration of �1.1� 1016 cm�3 by halide vapor phase epitaxy
(HVPE). Then, we directly deposited an ultrathin BN film on the sub-
strate by PLD, operating with a KrF excimer laser having a wavelength
of 248nm and a pulse width of 25 nS. The film was grown using the
following deposition conditions: growth temperature (TG) �750 �C,
laser fluency �2.3 J/cm2, target-to-substrate distance �50mm,
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repetition rate of 5Hz, and in the presence of high-purity nitrogen gas
partial pressure (PN2) �100 mTorr. For ablation, we used a one-inch
diameter h-BN target (American Element, 99.9%). Before growth, the
Ga2O3 substrate was pre-annealed at the same growth temperature
(�750 �C) for �15min to remove the surface contaminants. For the
deposition, 500 laser shots were supplied (providing a thickness of
�2.8 nm, as shown later). After growth, the substrate was also post-
annealed at the same TG and PN2 (for 15min) and then cooled down
to room temperature at�20 �C/min.

We performed x-ray photoelectron spectroscopy (XPS) by using
a PHI Quantera SXM scanning x-ray microprobe with a monochro-
matic Al Ka x-ray source (�1486.6 eV). XPS spectra show the pres-
ence of B–N peaks, in both the B 1s (�190.65 eV) and N 1s
(�398.15 eV) core-level elemental scans, as shown in Fig. 1(a), which
are typical characteristics of BN.25,28 Figure 1(c) shows the XPS valence
band spectra (VBS) feature of BN, with a valence band maximum
(VBM) at 1.8 eV, below the Fermi level.19 We also obtained Raman

spectra by using a Renishaw inVia confocal microscope, operating
with a 532 nm laser excitation source, which shows the presence of BN
E2g stretching mode with a peak at �1358 cm�1, with a full-width at
half-maxima (FWHM) of �14.81 cm�1, as shown in Fig. 1(d).28 To
confirm the thickness and crystallinity of BN, we performed cross-
sectional atomically resolved high-resolution transmission electron
microscopy (HRTEM) of the film. The HRTEM specimen was pre-
pared via a focused ion beam milling process utilizing a Helios Nano
Lab 660 FIB unit, and an aberration-corrected Titan Transmission
electron microscope (FEI Titan Themis 3) with an acceleration voltage
of 300 kV was employed. From the HRTEM image, we can clearly see
the formation of a �2.8 nm dense BN layer (between Au and Ga2O3),
as shown in Fig. 1(e). The BN layer is amorphous since it does not
have a long-range order.

Figures 2(a) and 2(b) show schematics of Ga2O3 SBDs and MIS
diodes. Ti/Au metal stacks were first deposited on the back, followed
by rapid thermal annealing at 450 �C for 1min to form Ohmic

FIG. 1. (a) and (b) XPS core-level B1s
and N1s elemental scan of a BN film
shows the presence of B and N. (c) XPS
valence band spectra of BN. (d) Raman
spectra shows characteristic h-BN E2g
Raman mode. (e) Cross-sectional HRTEM
shows a �2.8 nm layer of BN.
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contacts. Circular Ni/Au Schottky contacts were deposited on the top
by electron beam evaporation and were patterned by standard lithog-
raphy and liftoff process. Capacitance–voltage (C–V) and current den-
sity–voltage (J–V) characteristics were measured by Keysight B1505A.
Figures 2(c) and 2(d) show the representative C–V and C�2–V charac-
teristics of SBDs andMIS diodes, respectively.

The net doping concentration (Nd–Na) and Schottky barrier
heights at zero bias (UB,0) of SBDs and MIS diodes are 1.12
� 1016 cm�3, 1.54 eV and 1.18� 1016 cm�3, 1.74 eV, respectively,
which can be extracted from the C�2–V plots.29

Figures 3(a) and 3(b) show the representative forward J–V char-
acteristics of Ga2O3 SBDs and MIS diodes in both linear and semi-log
scale, respectively. The ideality factor and Schottky barrier heights
(UB) for the SBD and MIS diode are 1.22, 0.99 eV and 2.51, 0.96 eV,
respectively. The increased ideality factor can be attributed to inhomo-
geneous Schottky barrier and interface states, which is typical for MIS
diodes.30,31 The on/off ratio of SBD and MIS diode are �108 and
�107, respectively, showing promising rectifying capability. The on-
resistance of the SBD and the MIS diode is 5.5 and 41.3 mX�cm2,

respectively. The values of UB,0 determined from C–V plots are much
higher than the values of UB determined from J–V plots, which is a
typical phenomenon because of the effect of barrier height inhomoge-
neity of SBDs.32,33 The barrier height inhomogeneity can come from
the interface states between the insulator and the semiconductor and
from the spatial inhomogeneity at the metal/semiconductor interface,
which will result in the spatial inhomogeneities of barriers. These inho-
mogeneities will affect the capacitance and current differently.34 The
C–V measurements basically obtain the average barrier height, while
the J–V measurements will obtain the lowest barrier height. Therefore,
the barrier heights from C–V are higher than those from J–V.

Figures 4(a) and 4(b) show the temperature-dependent J–V char-
acteristics of SBDs and MIS diodes from 298 to 473K (with steps of
25K) in a semi-log scale. The temperature-dependent ideality factor
and barrier heights are extracted, as shown in Figs. 4(c) and 4(d). The
ideality factor of SBDs decreases from 1.22 to 1.18 from 298 to 473K,
and the barrier heights of SBDs increase from 0.99 to 1.07 eV from 298
to 473K. The ideality factor of MIS diodes decreases from 2.51 to 1.72
from 298 to 473K, and the barrier heights of MIS diodes increase from

FIG. 2. (a) and (b) Schematics of
b-Ga2O3 SBDs and MIS diodes, respec-
tively. (c) and (d) C–V and C�2–V plots of
Ga2O3 SBDs and MIS diodes,
respectively.

FIG. 3. (a) and (b) Forward J–V charac-
teristics for Ga2O3 SBDs and MIS diodes
in linear and semi-log scales, respectively.
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0.96 to 1.36 eV from 298 to 473K. For an ideal SBD with a homoge-
neous barrier height, it should follow the thermionic emission and pos-
sess a temperature-independent barrier height. Compared to SBDs, the
ideality factor and barrier heights of MIS diodes have a larger variation
with increasing temperature, because of the inhomogeneous barrier
height induced by the insertion of BN.35,36 At low temperatures, the
charge carriers do not have enough energy, so they can only surpass
the lower barrier. At higher temperatures, the charge carriers gain
enough energy so that they can overcome the higher barrier, and the
barrier height of MIS diodes increases with increasing temperatures.

Figure 5 plots the reverse J–V characteristics of SBDs and MIS
diodes. The devices were immersed in Fluorinert solution during the
measurement to prevent the early breakdown of the air. The break-
down voltage of the SBD is 732V and is increased to 1035V for the
MIS diode, which could be explained by the passivated surface-related
defects and the reduced reverse leakage currents. The premature
breakdown of the devices can be ascribed to defect-related leakage,
especially at the device surface where defect densities are high (e.g.,
vacancies, impurities, and dangling bonds at surface).37,38 The

insertion of the BN layer helps to passivate the surface-related defects
and reduce the leakage currents. Consequently, the breakdown vol-
tages of the MIS diodes are improved.

To further clarify the advantage of the MIS diode over the SBD,
we provide a quantitative analysis of the power figure of merit (FOM)
of the SBD and the MIS diode, assuming that the devices have been
fully optimized. Based on the forward thermionic emission (TE) equa-
tion and reverse thermionic field emission (TFE) equation, the break-
down voltage and the on-resistance can be extracted. The FOM of the
SBD and the MIS diode is calculated to be 0.74 and 1.76GW cm�2,
respectively. With the insertion of the BN layer, the FOM of the MIS
diode shows an improvement by 138% in comparison to the FOM of
the SBD. The detail of the calculation is shown in the supplementary
material.

To boost the performance of the MIS diode to the theoretical
value, several strategies are proposed to improve the quality of BN
films. First, other growth methods including ion beam sputtering
deposition (IBSD), chemical vapor deposition (CVD), and metal-
organic chemical vapor deposition (MOCVD) can be used to directly

FIG. 4. (a) and (b) Forward J–V curves.
(c) and (d) Ideality factor (n) and Schottky
barrier heights (UB) at different tempera-
tures for Ga2O3 SBDs and MIS diodes.

FIG. 5. (a) Reverse J–V characteristics of
Ga2O3 SBDs and MIS diodes. (b)
Breakdown voltage distribution of 18
Ga2O3 SBDs and MIS diodes.
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grow BN on Ga2O3. For example, Chen et al. demonstrated the direct
growth of high-quality h-BN thin films on Ga2O3 substrates by
IBSD.39 Second, A bilayer dielectric structure can be used to improve
the quality of BN films. BN can be grown on another ultrathin dielec-
tric layer such as Al2O3, and high-quality BN thin film growth on
Al2O3 has been achieved.40 At last, BN can be grown on Ga2O3 sub-
strates with different orientations. Orientation-dependent band offsets
have been observed for NiO/Ga2O3 heterostructures.

41 Therefore, BN
can be grown on Ga2O3 substrates in (100), (010), and (�201) orienta-
tions to tune the quality of BN films and the band offsets of BN/Ga2O3

heterostructures.
In summary, we fabricated Ga2O3 MIS diodes by directly growing

an ultrathin BN interlayer on the Ga2O3 substrate using PLD.
Remarkably, devices show enhanced breakdown voltages with the
insertion of the BN layer (�732V for SBDs and �1035V for MIS
diodes), attributed to the passivated surface-related defects and the
reduced reverse leakage current. Our work provides an effective and
efficient strategy to improve the performance of Ga2O3-based devices
for high-power electronics.

See the supplementary material for the details regarding the theo-
retical calculation of FOM of the SBD and the MIS diode.
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