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Abstract— We demonstrate threshold switching behav-
iors with working temperatures up to 500 ◦C based on GaN
vertical p-n diodes, and these devices survived a passive
test in a simulated Venus environment (460 ◦C, 94 bar, CO2
gas flow) for ten days. This is realized via interface engi-
neering through an etch-then-regrow process combination
with a Ga2O3 interlayer. It is hypothesized the traps in
the interfacial layer can form/rupture a conductive path by
trapping/detrapping electrons/holes, which are responsible
for the observed threshold switching behaviors. To the best
of our knowledge, this is the first demonstration of two-
terminal threshold-switching memory devices under such
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high temperatures. These results can serve as a critical
reference for the future development of GaN-based memory
devices for harsh environment applications.

Index Terms— Ga2O3, GaN, harsh environment, high
temperature, interface engineering, memory, p-n diodes,
threshold switching, Venus, wide bandgap semiconductor.

I. INTRODUCTION

RECENT years have seen intensive research interests in
resistive random access memory (RRAM) from both

industries and academia due to its great potential in non-
volatile memory (NVM) [1], neuromorphic computing [2],
[3], compute-in-memory systems [4], and artificial intelligence
[5]. RRAM has excellent scalability, fast write/read speed, and
low programming voltage, which is beneficial for large-scale
and high-density NVM. There are two major RRAM array
structures: one transistor and one resistor (1T1R) and crossbar.
Compared with the 1T1R arrays, crossbar arrays, consisting of
rows and columns perpendicular to each other with RRAM
cells sandwiched in between, exhibit smaller cell area and
better scalability, but the sneak path current through unselected
cells in the array presents a significant challenge due to the
degradation of read and write margin and increased power
consumption. To reduce the sneak path, the threshold switch-
ing selectors with strong I –V nonlinearities are desired to be
added in series with RRAM cell [6], [7], [8], [9].

Many oxides have exhibited resistive and threshold switch-
ing behaviors [10], [11], [12], such as TiOx , ZnOx , NiO,
AlOx , TiN/HfO2, and so on. However, most of the reported
devices showed a working temperature of below 200 ◦C and
radiation sensitivity, which limit their potential applications
in harsh environments, such as space and high temperatures
[13]. Recently, III-nitrides have also been reported to show
resistive switching behaviors [14], [15]. III-nitride materi-
als are thermally and chemically stable and have already
been widely used in various optoelectronics and electronics,
e.g., light-emitting diodes [16], [17], power electronics [18],
[19], and high-temperature mixed-signal and RF electronics
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Fig. 1. (a) Schematic cross section of the GaN diode. (b) Schematics
of the fabrication process of GaN diode based on etch-then-regrow
process.

[20], [21], [22], [23]. Developing high-performance III-nitride-
based threshold switching devices can open doors for new
generation GaN-based RRAM arrays and integrated circuits
in harsh environments.

In this work, we demonstrate the GaN-based threshold
switching behaviors with stable high-temperature performance
up to 500 ◦C for the first time, which is much higher than our
previous report [24]. They also survived a passive test in a
simulated Venus environment for ten days.

II. GAN THRESHOLD SWITCHING BEHAVIORS

As shown in Fig. 1, the GaN p-n diodes were fabricated
by an etch-then-regrow process. Samples were homoepitax-
ially grown by MOCVD on c-plane n-GaN substrates. An
unintentionally doped (UID) GaN (4 µm, 1016 cm−3) was
first grown on the GaN substrate. Then, 500-nm GaN was
etched away to form an etched surface by ICP, followed
by 50-nm UID-GaN as an insertion layer and 1-µm p-GaN
successively regrown on the etched surface by MOCVD. The
top and bottom electrodes were formed by metal stacks of
Pd/Ni/Au and Ti/Al/Ni/Au, respectively. The etch-then-regrow
process introduced a large amount of Si and O atoms according
to secondary-ion-mass spectrometry results and an interfacial
layer was formed after the etch-then-regrow process according
to transmission electron microscopy results, which has been
reported in our previous works [25], [26].

Fig. 2(a) shows the resistive switching characteristics of the
GaN diode after the forming process through a soft reverse
breakdown. The threshold voltage (Vth) was 14 V and hold
voltage (Vhold) was 4 V, which were universally observed
for multiple devices. We could also calculate the ON current
density of 40 A/cm2 and OFF current density of 0.4 A/cm2

after dividing the current by the device’s area. The threshold
switching behavior was only observed at positive bias since
the device contains a p-n diode. Due to this fact, the emission
of blue light from the p-n junction could also be used as an
indicator for the switching process between the ON state and
the OFF state [Fig. 2(b)]. This device could robustly work at
25 ◦C–300 ◦C and survive 1000 cycles test at 300 ◦C, which
has been reported in our previous work [24].

The current at Vth at the OFF state as a function of temper-
ature is shown in Fig. 2(c). The decrease in the current with
increasing temperatures is due to a thermal detrapping effect.

Fig. 2. (a) I–V curve of GaN diode after the forming process. Numbers
and arrows indicate the sequence of voltage sweeping. (b) Top: ON state
of GaN selector with light emission. Bottom: OFF state without light
emission. (c) Current at Vth as a function of temperature. The thermal
activation energy for the detrapping process is 112 meV.

The temperature dependence of the current can be expressed
as follows [27]:

I = I0 exp
(

Ea

kT

)
(1)

where k is the Boltzmann constant and Ea is the thermal
activation energy. Ea refers to the thermal detrapping energy
in this work, which is 112 meV by fitting the experimental
data. In our previous study, we reported that trap-assisted
space charge limited current theory could explain the I –V
characteristic in Fig. 2(a) [24]. Furthermore, as shown in
Fig. 2(c), the energy difference between detrapping energy
level and EC /EV is 112 meV.

Expired by trap-assisted space charge limited current theory,
we proposed a physical mechanism to explain the observed
threshold switching behaviors in the GaN diode [28], [29].
Electron/hole traps in the interfacial layer form/rupture a con-
ductive path by trapping/detrapping electrons/holes. Energy
band diagrams for the GaN diode at different voltages are
shown in Fig. 3. Before the forming process, the device
behaves like a conventional p-n diode [Fig. 3(a)]. The details
of the forming process have been reported in our previous
work [24]. After the forming process, an insulation layer
containing many traps may form at the regrowth interface
[Fig. 3(b)]. When a low positive bias (<Vhold) is applied to
the device, the positive bias mainly drops across the p-n
junction and then the insulation layer [Fig. 3(c)]. Therefore,
the current of the device is very low and the device is at
OFF state. Meanwhile, the electrons/holes are trapped by the
interfacial traps [Fig. 3(d)], and therefore, the emission of blue
light is not observed. When the positive bias increases to Vth,
a conductive path forms by trapping enough electrons/holes
[Fig. 3(e)]. Then, the insulator behaves like a conductive layer
with low resistance and the device behaves like a conventional
p-n diode (ON state). The emission of blue light is observed
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Fig. 3. Energy band diagrams for GaN diode at different voltages. (a) No
insulation layer before the forming process. (b) Insulation layer forms at
the regrowth interface after the forming process. (c) Voltage drops on the
p-n junction and insulation layer. (d) Injection happens. (e) Conductive
path forms due to the injection when above Vth. (f) Device behaves like
a traditional p-n diode and detrapping happens. (g) Conductive path
disappears due to the detrapping. (h) High temperature enhances the
detrapping. (i) C–V characteristics of forward and backward sweeping.
(j) Resistance and capacitance of backward sweeping.

until the voltage decreases to Vhold [Figs. 2(b) and 3(f)]. When
the voltage continues to decrease below Vhold, few carriers are
trapped by the traps because the p-n junction is turned off,
i.e., OFF state [Fig. 3(g)]. With increasing temperature, more
electrons/holes detrap from interfacial traps to the conduc-
tion/valence band and then drift to n-GaN/p-GaN under the
built-in electrical field in the diode’s space charge region. The
direction of the drift current origin from detrapping is opposite
to that of the injection current [Fig. 3(h)]. Therefore, Vth
increases and Ioff decreases with increasing temperature. The
decrease of current at the OFF state with increasing temperature
is also due to the thermal detrapping effect. Besides, because
most of the voltages drop on the p-n diode at the reverse bias,
the threshold switching behavior is negligible at the reverse
bias.

The C–V characteristics of forward and backward sweeping
are conducted to support the above mechanics. Fig. 3(i) shows
a clear difference in integral areas of capacitance–voltage
(C–V ) curves by forward and backward sweeping. This
indicates that a lot of charges were trapped during voltage
sweeping from OFF state to ON state. Specifically, the trapped
charges (Q1) are approximately 1.26 nC. According to the
forward sweeping C–V curve, the injection charge (Q2) is
0.72 nC when bias increases from 0 to 14 V. When the
bias is higher than 14 V, the conductive path will form,
and this is the reason why a Vth of 14 V is obtained in
Fig. 2(a). According to the backward sweeping I –V curve in
Fig. 2(a) and C–V curve in Fig. 3(i), the device’s resistance
and capacitance during backward sweeping are illustrated in
Fig. 3(j). A sharp increase in resistance and a decrease in
capacitance are observed from 4.5 to 3.5 V, indicating the

Fig. 4. (a) Schematic cross section of the GaN diode with a Ga2O3
interlayer. (b) Schematics of the fabrication process of GaN diode with a
Ga2O3 interlayer. (c) XPS spectra of Ga 3d for the sample surface before
and after depositing 1-nm Ga2O3. (d) I–V curves of GaN selectors with
a Ga2O3 interlayer at 24 ◦C–500 ◦C. (e) Vth as a function of temperature
for the GaN diode with a Ga2O3 interlayer. (f) Energy band diagram of
GaN diode with a Ga2O3 interlayer.

conductive path disappearance. This is the origin of Vhold
at 4 V. Therefore, our proposed physical mechanism could
explain these experimental phenomena.

III. ENHANCED HIGH-TEMPERATURE PERFORMANCE

The device based on the etch-then-regrow process can work
up to 300 ◦C. However, the threshold switching behavior
disappeared at higher than 350 ◦C due to the strong thermal
detrapping effect. Meanwhile, based on the mechanism dis-
cussed above, the key factor for the GaN threshold switching
behavior is the interfacial layer with traps. Therefore, an inten-
tional interlayer could be helpful to make the device more
controllable with better high-temperature performance.

As the native oxide of GaN, Ga2O3 is a promising candidate
for the interfacial layer with a small lattice mismatch (<5%).
Fig. 4(a) and (b) shows the fabrication process of diodes with
1-nm Ga2O3 as the interlayer by plasma-enhanced atomic layer
deposition (PEALD). Trimethylgallium (TMG) and O2 plasma
were used to grow Ga2O3 at 200 ◦C. TMG (99.998%, Strem
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Fig. 5. (a) DUT placed in simulated Venus’s environment for the passive
test. (b) I–V curve before and after the passive test.

Chemicals, Inc.) was used as the Ga source and delivered
into the reactor using Ar carrier gas (99.999%) with a flow
rate 2.0 sccm, resulting in a pressure transient of 200 mtorr.
TMG was pulsed for 0.1 s into Ar carrier gas, followed by
a 30-s exposure. The chamber was purged between exposures
for 30 s using a 30.0-sccm N2 (99.999%) flow. O2 plasma
was generated using a 13.56-MHz RF generator with an
O2 (99.999%) flow rate of 30.0 sccm. A throttling valve
is used to maintain a pressure of 100 mtorr. O2 pressure
stabilized for 5 s before plasma ignition, followed by 100-W
plasma exposure for 10 s. Further description of this PEALD
process has been reported [30]. The broadening of the Ga
3d peak in XPS spectra shows the bonding of Ga to O
[Fig. 4(c)]. The Ga2O3 interlayer was found to be effective in
improving the high-temperature performance of the selector,
which can work up to 500 ◦C [Fig. 4(d)]. The decrease
of Vth could be explained by the reduced trapped charges
after introducing Ga2O3. Vth of the device first increased
and then decreased with increasing temperatures [Fig. 4(e)].
This nonlinear variation is due to the thermally enhanced
detrapping and trapping processes [Fig. 4(f)]. According to
the explanation of Fig. 3(h), the detrapping from interfacial
traps increased Vth at 25 ◦C–300 ◦C. At 300 ◦C–500 ◦C,
thermally activated intrinsic carrier densities in p GaN and
n GaN increased rapidly. The injection of thermal activation
carriers into traps decreased the Vth.

The device under test (DUT) was placed in a simulated
Venus environment (460 ◦C, 94 bar, CO2 gas flow) over
ten days in the University of Arkansas chamber [Fig. 5(a)].
A comparison of the I –V curves reveals that the threshold
switching behavior of the device was maintained even though
there is without passivation, which indicates that this device
is a promising candidate for selector in NVM or volatile
memory for harsh environment applications. However, Vth and
Vhold are significantly increased [Fig. 5(b)], which might be
caused by p-GaN conductivity degradation, surface damage,
increased trapping density at the regrown interface, and/or
electrode metal degradation after a harsh environment test, and
the performance should be more stable. Introducing suitable
passivation layer could improve the stability by maintaining
the p-GaN conductivity and protecting the device surface
from thermal damage and consequently improve the device’s
robustness operation in harsh environments. It should be noted
that the trapped charges varied at devices. Therefore, Vth of
the device in Fig. 5(b) is different from that in Fig. 4(d).

TABLE I
SUMMARY OF GAN-BASED HIGH-TEMPERATURE MEMORY

A summary of GaN-based high-temperature memory
reported in the literature is presented in Table I. To the best of
our knowledge, this is the first demonstration of two-terminal
GaN-based memory with working temperatures up to 500 ◦C
and surviving a passive test in a simulated Venus environment.

IV. CONCLUSION

GaN-based threshold switching selectors working up to
500 ◦C were realized via interface engineering through an
etch-then-regrow process in combination with a Ga2O3 inter-
layer. It is hypothesized that the traps in the interfacial layer
can form/rupture a conductive path by trapping/detrapping
electrons/holes, which are responsible for the observed thresh-
old switching behavior. The addition of Ga2O3 interlayer
prior to the regrowth can remarkably improve the selector
thermal performance. The device threshold switching behavior
was maintained after a passive test in a simulated Venus
environment chamber over ten days. The result is an important
reference for developing GaN-based memory devices for harsh
environment applications.
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